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Abstract
Background: In real-time PCR data analysis, the cycle threshold (CT) method is currently the gold
standard. This method is based on an assumption of equal PCR efficiency in all reactions, and
precision may suffer if this condition is not met. Nonlinear regression analysis (NLR) or curve fitting
has therefore been suggested as an alternative to the cycle threshold method for absolute
quantitation. The advantages of NLR are that the individual sample efficiency is simulated by the
model and that absolute quantitation is possible without a standard curve, releasing reaction wells
for unknown samples. However, the calculation method has not been evaluated systematically and
has not previously been applied to a TaqMan platform. Aim: To develop and evaluate an automated
NLR algorithm capable of generating batch production regression analysis.

Results: Total RNA samples extracted from human gastric mucosa were reverse transcribed and
analysed for TNFA, IL18 and ACTB by TaqMan real-time PCR. Fluorescence data were analysed
by the regular CT method with a standard curve, and by NLR with a positive control for conversion
of fluorescence intensity to copy number, and for this purpose an automated algorithm was written
in SPSS syntax. Eleven separate regression models were tested, and the output data was subjected
to Altman-Bland analysis. The Altman-Bland analysis showed that the best regression model yielded
quantitative data with an intra-assay variation of 58% vs. 24% for the CT derived copy numbers,
and with a mean inter-method deviation of × 0.8.

Conclusion: NLR can be automated for batch production analysis, but the CT method is more
precise for absolute quantitation in the present setting. The observed inter-method deviation is an
indication that assessment of the fluorescence conversion factor used in the regression method can
be improved. However, the versatility depends on the level of precision required, and in some
settings the increased cost effectiveness of NLR may justify the lower precision.

Background
The use of real-time PCR in functional genomics has
increased dramatically during the past decade. With this
method, the detection of template accumulation in the

PCR reaction is based on a fluorescent probe, or a fluores-
cent dye. The advantages compared to former PCR
approaches are many: A: A closed compartment method
decreases risk of contamination, as no post-PCR handling
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is necessary. B: The data used for calculation of quantity
are collected as the PCR reaction runs, reducing the time
span from pre-PCR procedures to final results are availa-
ble. C: Compared to endpoint analyses of PCR reactions,
real-time PCR is unmatched in precision – and D: An
extreme dynamic range of 7–8 log10 [1,2].

In the software currently available, analysis of real-time
data is generally based on the "cycle-threshold" (CT)
method. Some packages offer curve-smoothing and nor-
malisation, but the basic CT algorithm remains
unchanged. Threshold fluorescence is calculated from the
initial cycles, and in each reaction the CT value is defined
by the fractional cycle at which the fluorescence intensity
equals the threshold fluorescence. A standard curve can be
used for absolute quantitation, or the comparative CT
method can be used for relative quantitation [3].

The CT method is quite stable and straightforward, so why
try to complicate things? The answer is that the precision
of estimates is impaired if efficiency is not equal in all
reactions. Uniform reaction efficiency is the most impor-
tant assumption of the CT method. The simplest estimate
of individual sample efficiency is calculated from the
slope of the first part of the log-linear phase [4], and can
be used for identification of outliers or correction of val-
ues from individual samples. The sigmoid curve fit or
non-linear regression (NLR) [5], on the other hand,
assumes a dynamic change in efficiency and closely

resembles the observed course of fluorescence accumula-
tion during the whole reaction. A further advantage of
regression analysis is the possibility to generate estimates
of initial copy number directly from the regression esti-
mates, eliminating the need for a standard curve [6]. In
small study series, the standard curve may be the best
choice – but in a high-throughput production lab, elimi-
nation of the standard curve could liberate time and
resources.

The first obstacle to the use of NLR is that the algorithm
needs to be automated. The second and more important
obstacle is that proper evaluation is missing both of the
comparison of NLR with the CT method, and of the per-
formance of NLR with probe-based chemistry. We there-
fore decided to develop and evaluate an automated
regression model, to test if NLR is a real alternative to the
traditional CT method.

Results
Figure 1 shows an example of a curve-fit generated by
NLR. In models 6, 9 and 11, one or more regressions
returned bad fits (defined as generation of "impossible
values" such as negative Fmax, etc.). In figure 2, plots of
NLR- vs. CT-generated data are shown. Most models show
a fair correlation. Models 3, 8, and 10 have higher bias
than the rest, and the error is higher in models 2, 8, and
10. Models with one or more "bad fits" are not shown.

Altman-Bland plots were made of the numerical differ-
ences between duplicates (error) vs. duplicate means for
each dataset and each regression model and the CT
method. These plots showed an increase of error with
increasing mean (an example of this is shown in figure 3).
However, a log10 transformation of all final estimated val-
ues could resolve this pattern, and the error plots showed
independence (figure 4 compares intra-assay variation
with model 4 and with the CT method – for all assays).
The intra-assay variation could then be characterised by a
95 percentile of the observed errors. The inverse log10 of
this percentile can be interpreted as factor variation and
recalculated to a percentage, as presented in table 2.

The mean copy number of duplicates was then analysed
in plots of differences between NLR- and CT-derived val-
ues (bias) vs. means (of NLR- and CT-derived values).
Again, independence could be observed after log10 trans-
formation of the copy number values, but not in the raw
data. In each experiment there was a relative bias, but
when comparing the different experiments the bias was
clearly not systematic. In figure 5, the bias of model 4 is
shown in an Altman Bland plot containing data from all
three experiments. The distribution of the data clouds
indicates that each conversion factor varies between
experiments in a random manner.

Sigmoidal curve fittingFigure 1
Sigmoidal curve fitting. A sigmoidal curve fit of fluores-
cence data from a real-time experiment (ACTB). Observed 
fluorescence plotted as data points (o), predicted fluores-
cence shown as a curve. The data set in this example is not 
background corrected.
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The calculated conversion factors ranged from 7.96E+10
to 3.07E+11 copies/fluorescence unit. Table 2 offers an
overview of all models tested and key figures of their per-
formance. The error percentiles stated are calculated on
pooled data from all 3 assays, and the bias values are
means of pooled numerical bias. As can be seen in figure

5, a simple average of pooled values would yield an erro-
neously low estimate of the bias, so the overall bias of
each regression model has been calculated as an average
of numerical bias values. For evaluation of the modifica-
tions applied, table 3 offers an overview of resulting R2

mean, error, and bias changes.

Plots of copy numbers by NLR vsFigure 2
Plots of copy numbers by NLR vs. CT. ACTB mRNA measured by real-time PCR on extracts from human gastric mucosa. 
Plots show values (copies/µL) derived by NLR (Y-axis) vs. by CT (X-axis). A line of identity is inserted in each plot. Models that 
produced one or more bad fits are not shown.
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Discussion
CT method
In the CT method equal efficiency in all reactions is
assumed, and the impact of this assumption on final esti-
mates has been underlined previously [4,7,8]. Tichopad

[4] presented a standardised, automatable algorithm for
estimation of sample specific efficiency, and a similar
approach was published by Ramakers et al [8]. These
models calculate efficiency at the early log-linear phase,
and assume homogenous efficiency before that. However,

Error vsFigure 3
Error vs. mean shows independence following log10 transformation. Data generated from real-time RT-PCR assay for 
IL18 on RNA extracts from human gastric mucosa. Upper left plot shows error (numerical difference between duplicate val-
ues) vs. mean (of duplicate values) for values derived by the NLR method. As the error tends to increase with the mean, a plot 
based on log10 transformed copy numbers is shown (upper right), and independence can be observed. The same pattern was 
observed for the bias (difference between NLR- and CT-generated values), in the lower left plot. Again, a log10 transformation 
of the copy number values (lower right) can remove the trend, and independence can be observed.
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Intra-assay variation by the NLR (model 4) and by the CT methodFigure 4
Intra-assay variation by the NLR (model 4) and by the CT method. Real-time RT-PCR data for ACTB, IL18 and 
TNFA on RNA extracts from human gastric mucosa. Plots show intra-assay variation or error (difference between duplicate 
values) vs. mean (of duplicates) calculated from log10 transformed copy number values. The left column is NLR data from model 
4, the right column is CT-derived values. The errors observed seem to be independent of mean values. A 95 percentile of 
these data can then be calculated for evaluation of assay performance. Generally, the intra-assay variation is lower in CT-
method derived values.
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calculation of sample specific efficiency was also evalu-
ated by Peirson et al [9], who concluded that this
approach was good for detection of outliers, but individ-
ual efficiency correction did not improve the precision of
absolute quantitation.

The CT method has also been combined with curve-
smoothing to obtain background correction and data
smoothing (in the soFAR software package [10] and by
Larionov et al [11], who also included amplitude normal-
isation). The latter approach may produce nice curves, but
especially amplitude normalisation will change the slope
of the log-linear phase and thereby mask differences in
reaction efficiency.

NLR
Theoretically, a calculation of template accumulation that
mimics the dynamic change in PCR efficiency, and
includes a larger array of the collected fluorescence data,
could be more precise than the CT method. Alternatives to
CT-based calculation have been suggested previously
[5,6,12,13]. One model that assumes a dynamic change in
efficiency is the sigmoidal curve fit [5], though limitations
apply [6,12]. Especially the late plateau phase of the reac-
tion is difficult to fit in this mathematical model. Rutledge
suggested removal of observations from the late plateau
phase to increase goodness-of-fit to the remaining data.
Principal objections aside, the latter approach is less well

suited for automation. To solve this problem we tested
weighted analysis, which performed well in automation
but unfortunately did not improve the precision of esti-
mates.

Automation
Algorithms for this type of analysis should be independ-
ent on user input apart from the raw data, to eliminate
user-dependent bias. In general, "mass production" tech-
niques should be used with caution in complicated regres-
sion models, as small errors may impair the precision of
the final estimates [14]. Of the models initially investi-
gated in this study, three produced one or more bad fits
when automated – which illustrates a potential disadvan-
tage of NLR when compared to CT analysis. The remain-
ing eight models seemed robust, and could be evaluated
more thoroughly.

Model evaluation
The R2 value can be interpreted as "the amount of
observed variation explained by the regression model".
The mean R2 values in table 2 show that all models gener-
ated values above 0.99. Obviously, differences in the 3rd

decimal place of R2 are not a good measure of model per-
formance, so the Altman-Bland method is more informa-
tive.

In the present study, the gold standard CT method has an
intra-assay variation (error) of 24%, which is close to pre-
viously reported values [15]. This error is a sum of the
inaccuracies in fluorescence measurement, thermocy-
cling, pre-PCR procedures, and the CT fractional cycle esti-
mate. Most of these inaccuracies are common to both
calculation methods. In NLR, 4 or 5 variables are esti-
mated in each analysis (C1/2, Fmax, k, Fb, f), and each of
these estimates contain intrinsic error. Thus, the resulting
intra-assay variation is a combination of inaccuracies in
the pre-PCR procedures, equipment errors, and errors in
the variable estimates. Thus, in effect at least 35% of the
total 59% error in model 4 is generated by the mathemat-
ical model itself.

Of the four different modifications to the original model
tested, changes in R2 were minute – but in terms of error
all modifications tested had a negative impact on the
model, probably due to the increased number of variables
estimated. Model 4 (log10 transformation of raw data)
produced marginally lower bias and marginally higher
error, and this is the only modification that was not
directly harmful to model performance.

The high-performance assays used in this study are an
optimal setting for CT analysis, and our evaluation may
therefore be quite conservative in terms of demonstrating
the advantages of NLR. In assays with varying PCR effi-

Bias between the NLR and the CT methodFigure 5
Bias between the NLR and the CT method. Real-time 
RT-PCR data for ACTB, IL18 and TNFA on RNA extracts 
from human gastric mucosa – a graphical representation of 
the observed bias between NLR and CT methods (inter-
method agreement or inter-assay variation) in all three assays 
tested in this study. The final estimated copy numbers were 
transformed by log10 before calculation of bias. For these 
methods to be freely interchangeable, the bias plots should 
form a cloud around the zero line.
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ciency, the NLR method may yet prove to be more precise
than the CT method. This, however, awaits systematic
evaluation.

Conversion factor
The use of an absolute conversion factor, or optical cali-
bration, has been evaluated previously in different analy-
sis models [6,13]. The three data clouds in figure 5 were
generated with separate conversion factors, and their dis-
tribution shows a pattern of random variation, underlin-
ing that our conversion factor assessment was inaccurate.
However, the conversion factor only affects the absolute
sample value and not the intra-assay variation, nor the
rank position of a sample in the data set.

Probe-based chemistry theoretically offers a stoichiomet-
ric calibration, as each probe has one reporter and one
quencher molecule. In effect, the conversion factor should
be universal and independent on the template measured.
The conversion factors calculated in this series ranged ×
3.9 from lowest to highest, and this also indicates that the
precision of our conversion factors was less than optimal.
Stoichiometric calibration was investigated in detail by
Swillens et al [13], who lowered probe concentration to
define probe as the limiting factor of fluorescence accu-
mulation. This approach assumes a precise probe concen-
tration and a 100% conjugation and purity. As the
problem of signal to noise ratio is inherent in all probe-
based assays, a reduction of probe concentration lowers
the detection window even further and may impair preci-
sion.

Alternative mathematical models
For curve smoothing combined with the CT method, the
sigmoidal curve fit may not be optimal – as the Gompertz
function [16] shows a better fit both with the steep
increase phase and the late plateau phase. The Gompertz
algorithm is not suitable for estimation of initial fluores-
cence, though (tested, not shown).

To calculate the initial copy number accurately, the effi-
ciency of each cycle must be estimated:

In theory each of these efficiencies could be measured
directly on the fluorescence curve. In practice, however,
only a few points on the PCR curve yield workable effi-
ciency estimates because the early plateau phase is domi-
nated by background noise. Rutledge recently proposed
an alternative model for estimation of maximal efficiency
based on the sigmoidal model [17]. As the efficiency is
directly calculable in the log-linear phase [4], the impor-
tant extremes of efficiency (E0 and ECT) can be assessed.
Further work will show if this model is workable, or if it
will fall short on the problem of multiple estimates.

Conclusion
NLR is automatable and may be a powerful tool for anal-
ysis of fluorescence data from real-time PCR experiments.
The unfavourable signal to noise ratio of the probe-based
assays did not impair NLR analysis. The versatility of NLR

N
N

E E E
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CT
0

0 1 1
=

× × × −…

Table 1: The primer and probe sequences used in TaqMan PCR

Assay Primer Sequence

ACTB PubMed accession number: BC002409
Forward 5' TGCCGACAGGATGCAGAAG 3'
Reverse 5' GCCGATCCACACGGAGTACT 3'
Probe FAM 5' AGATCAAGATCATTGCTCCTCCTGAGCGC 3' TAMRA

TNFA PubMed accession number: X01394

Forward 5' CACGCTCTTCTGCCTGCTG 3'
Reverse 5' GATGATCTGACTGCCTGGGC 3'
Probe FAM 5' CCAGAGGGAAGAGTTCCCCAGGGAC 3' TAMRA

IL18 PubMed accession number: BC007461

Forward 5' ATCGCTTCCTCTCGCAACA 3'
Reverse 5' CATTGCCACAAAGTTGATGCA 3'
Probe FAM 5' CAGGAATAAAGATGGCTGCTGAACCAG 3' TAMRA

Primers and probes were generated by Primer Express 1.0 using sequence data from Pubmed. All assays cross exon splicing points in order to avoid 
detection of genomic DNA. Following assay design, specificity was double-checked by a BLAST search on the NCBI website.
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depends on the precision needed – but if adaptable, this
analysis method may save both time and resources in the
laboratory. Further work is needed as to improve preci-
sion of the fluorescence-copy number conversion factor in
order to reduce the bias observed in this study.

It is indeed possible to obtain absolute quantitation from
real-time data without a standard curve. In an optimised
assay, however, the CT method remains the gold standard
due to the inherent errors of the multiple estimates used
in NLR.

Methods
RNA extraction
Forty-four biopsies of human gastric mucosa, collected by
endoscopy of outpatients referred for dyspepsia, were
included in this study after written informed consent.
Biopsies were stored in RNA-Later (Ambion, Austin,
Texas, USA) until extraction by the Trizol method (Invitro-
gen, Carlsbad, California, USA) according to the manufac-
turer's instructions. A standardised amount of total RNA
(1µg) was reverse transcribed by Superscript II (Invitro-
gen), and cDNA was stored at -70°C. Samples were meas-
ured in duplicate by real-time PCR in an ABI-Prism 7900
instrument using TaqMan chemistry and SDS 2.1 software
(Applied Biosystems, Foster City, California, USA), and a
standard protocol in 25µL format. Three different tem-
plates were measured; table 1 shows the primers and
probes, manufactured as custom oligos by Eurogentec,
Seraing, Belgium. The absolute standard was produced by
serial dilution of a dsDNA PCR product, purified by gel
band analysis/extraction (GFX columns, Amersham, Pis-
cataway, NJ, USA), sequenced (BigDye 2.0, Applied Bio-
systems) and quantified by spectrophotometry
(Eppendorf Biophotometer, Hamburg, Germany). Based
on repeated standard curves, all three assays performed

well with calculated mean efficiencies above 1.99, and
standards with concentrations of 100 copies/µL or more
yielded CT values with a narrow 95%CI. At lower concen-
trations (10 and 1 copies/µL) CT values showed increas-
ing standard error, compatible with increasing stochastic
effects at low concentrations. The assays chosen have dif-
ferent expression levels in the tissue analysed
(ACTB>IL18>TNFA). Raw fluorescence readings were
exported from SDS as "clipped" text files which are reada-
ble by the statistics software. Regression analysis was per-
formed in SPSS 12.0.1 (SPSS Inc., Chicago, Illinois, USA).

Regression models
The primary regression model used for curve fitting has
been published previously [5,6]:

Equation 1:  Where FC is fluores-

cence at cycle C; Fmax is the maximal fluorescence inten-

sity; C is cycle number; C1/2 is the fractional cycle at half of

maximal fluorescence; k is a slope constant related to PCR
efficiency; and Fb is the background fluorescence.

This equation was tested with combinations of additional
mathematical modifications to increase goodness-of-fit
(R2 closer to 1), as described below. For an overview of the
11 regression models, see table 2.

Baseline drift correction

In most of the reactions a slight, but significant linear
increase of background fluorescence was observed. This
baseline drift could be corrected by the introduction of a
linear term in the regression model:

F
F

e

FC C C

k

b=

+

+
−

−









max

/

1

1 2

Table 2: An overview of regression models and key performance measures

Regression Model Results

Backgr. Corr. Log10 transform Weight Baseline drift corr. Bad fits Mean R2 Intra-assay variation Numerical Bias

1 No No No No No 0.9987 58 % 89 %
2 No No No Yes No 0.9988 83 % 102 %
3 No No ← Yes No 0.9982 80 % 121 %
4 No Yes No No No 0.9987 59 % 85 %
5 No Yes No Yes No 0.9991 94 % 97 %
6 No Yes ← Yes Yes 0.9986 104 % 130 %
7 No Yes → Yes No 0.9985 101 % 115 %
8 Yes No ← No No 0.9978 94 % 166 %
9 Yes Yes → No Yes 0.9768 29963 % 340 %
10 Yes No No No No 0.9922 83 % 102 %
11 Yes Yes No No Yes 0.9607 36336 % 526 %
CT Yes 24 %

An overview of the 11 regression models evaluated. In the left part of the table, the modifications of each model are stated. In the right part of the 
table, key features of the analysis are shown. Arrows in the weight column indicate early plateau phase (←) and late plateau phase (→).
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Equation 2:  where f is a

constant.

Weighted analysis
In the late plateau phase, a deviation from the sigmoid
pattern can be observed with SYBR green chemistry, and
unfortunately this tendency seems to be even stronger
with TaqMan chemistry. Rutledge addressed this problem
by removing such values from the calculation [6]. We pre-
ferred a weighted regression – allowing for increase/
decrease of impact of data – rather than removing values
completely from the calculations. To automate this proc-
ess, a "weight function" was devised based on a C1/2 esti-
mate. This function generates a set of weights that is
tailored to each specific reaction.

Equation 3:

The constant initialises the weight at a base level; the sec-
ond term gradually increases the weight from around 20
cycles before C1/2. The third term decreases the weight rap-
idly at C1/2, and the fourth term reduces the impact of the
weights at C1/2 above 35.

Log10 transformation
An alternative way of dealing with late plateau phase drift
is log10 transformation of fluorescence data, which
changes the profile of the fluorescence curve to a more sig-
moid pattern. In log10 transformed fluorescence data,
however, the background fluorescence makes the early
plateau phase very noisy – so a second, similar weight pro-
file algorithm was devised to lessen the impact of early
plateau phase data on the calculations.

Backgr. correction
The basis of CT analysis is fluorescence data corrected for
Backgr. detection (background noise). When exporting
data from SDS, two tables are generated, one with raw
data (no correction), and one with background subtrac-
tion (Backgr. corrected).

Absolute quantitation
Calculation of the template-related initial fluorescence
was made by substitution of C by 0:

Equation 4: 

The "optical calibration" was performed by running NLR
on the reactions with known copy number (the absolute
standard), and a conversion factor CF was calculated from
the estimated F0.

Equation 5: 

The regression models were written in SPSS syntax. On a
decent PC (2.6 GHz P4, 256 MB RAM, XP pro), the algo-
rithm processes an entire 96 reaction plate in less than 2
minutes.

Evaluation of output data
The three SDS files were subjected to analysis by CT/stand-
ard curve and by all 11 NLR algorithms. For each model,
a mean R2 was calculated for comparison of goodness of
fit between models. The data sets were then subjected to
Altman-Bland analysis [18]. Two types of Altman-Bland
plots were generated. In the first type, intra-assay variabil-
ity was evaluated in plots of numerical difference between
duplicate values (termed "error") vs. mean of the dupli-
cate values. If the error is independent of mean value, the
95th percentile is a measure of the overall intra-assay vari-
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Table 3: The impact of mathematical modifications on model performance

Model change Mean R2 change Intra-assay variation Bias

Backgr. corrected data -0.0065 +27% +15%
Log10 transformation 0 +1% -4%
Correction of baseline drift (linear) +0.0001 +20% -7%
Correction of baseline drift (Log10) +0.0004 +35% +12%
Weight early cycles (RAW) -0.0006 +3% +40%
Weight early cycles (Backgr. corrected) +0.0056 +11% +64%
Weight late cycles -0.0006 +7% +18%

Performance of model modifications applied to different regression models, evaluated as single modifications. Even though four modifications show 
better or unchanged mean R2, all modifications actually add to the intra-assay variability.
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ability. If independence is not observed (i.e. patterns are
observed in the scatter plot), appropriate transformation
of raw data (here: the calculated copy numbers) or parti-
tioned analysis must be applied before the error can be
evaluated. The second type of Altman-Bland plot was
aimed at evaluation of inter-method agreement (i.e., com-
parison of NLR vs. CT derived values). Plots of the point-
to-point differences (termed "bias") versus the means of
results derived by the two methods were inspected and
rules of independence applied. The mean of the observed
bias values yields a reasonable measure of the systematic
error of estimates.
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