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Abstract

MicroRNA (miRNA) and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in
eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire
of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we
used Illumina’s ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line
derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1.
We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and
short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine
miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian
miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus
might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered
10 small nucleolar RNA (snoRNA) loci that give rise to small RNA with possible miRNA-like function. Results presented in this
study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms
of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to
miRNA repository (miRBase) and NCBI GEO archive respectively. We envisage that these resources will facilitate functional
annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory
RNA in mammals.
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Introduction

MicroRNAs (miRNAs) are small 21–23 nucleotide regulatory

RNAs that modulate gene expression in animals and plants. In

animals regulation of gene expression by miRNAs is achieved by

sequence-specific targeting of the 39 untranslated regions of

messenger RNAs by the RNA induced silencing complex (RISC).

This results in translational repression of protein synthesis and, in

some cases, destabilization of messenger RNA [1]. The number of

newly discovered miRNAs is growing rapidly [2,3]. Moreover,

several other classes of small regulatory RNAs, distinguished by

their origin and biological functions, have been identified in recent

years (for review see [4,5]). These include small interfering RNAs

(siRNAs), encompassing trans-acting siRNAs (tasiRNAs) and

natural antisense transcript derived siRNAs (natsiRNAs), repeat-

associated siRNAs (rasiRNAs, also referred to as PIWI-interacting

RNAs or piRNAs), a recently identified group of snoRNA-derived

miRNAs, and small RNAs associated with gene promoters

(PASRs/tiRNAs) and 39 termini (TASRs) [4–9].

Identification of comprehensive sets of miRNAs and other small

regulatory RNAs in different organisms is a critical step to

facilitate our understanding of genome organization, genome

biology and evolution. The recently completed bovine genome is

the first sequenced genome of ruminant mammal that displays a

broad range of phenotypic characteristics that reflect adaptation to

different habitats and domestication. The large number of cattle

breeds selected for their commercially valuable traits (e.g. meat

and milk production) and their ability to thrive in different

environments make the bovine genome an attractive model to

study genetic and epigenetics variations underlying diverse cattle

phenotypes [10].

The latest release of the miRNA database (miRBase 13.0 March

2009) contains 356 bovine miRNA genes that code for 326 distinct

mature miRNAs and eight sequences originating from the RNA
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hairpin arm opposite to the annotated mature miRNA containing

arm, the so-called miRNA* [2]. Majority of these miRNAs have

been identified based only on sequence similarity to known

vertebrate miRNA orthologs and have never been confirmed

experimentally [3,11]. There were only two small scale studies

describing cloning and experimental validation of novel miRNAs

in cow [12,13]. Furthermore, the total number of bovine miRNA

genes is currently lower than that identified in other mammalian

genomes such as mouse (547 miRNA genes) and human (706

miRNA genes). This suggests that there are still many undiscov-

ered miRNAs in the bovine genome.

We aimed to extend the known repertoire of small regulatory

RNAs expressed in bovine tissues and identify miRNA that could

be disregulated upon viral infection. We used a cell line derived

from the adult bovine kidney under normal conditions and upon

infection of the cell line with the Bovine herpesvirus 1 (BoHV-1).

Illumina’s ultrahigh throughput sequencing approach has been

used successfully to identify new miRNAs and other classes of

small regulatory RNAs in several recent studies [6,9,14–18]. We

utilized this approach to sequence and analyze three small RNA

libraries. One library was prepared from mock-infected cells and

two others prepared from cells infected with BoHV-1 at two

different multiplications of infectivity (MOI). Each library was

sequenced individually and generated approximately five million

short sequence reads resulting in a total of almost 15 million

sequence reads. We utilized a recently developed bioinformatics

pipeline to distinguish authentic mature miRNA sequences from

other small RNAs and short RNA fragments represented in the

sequencing data [15]. Here, we describe a detailed analysis of this

sequence data and its interpretation.

Results and Discussion

To simplify the sequencing data, all identical sequence reads in

each small RNA library were grouped and converted into

sequence tags–unique sequences with associated counts of the

individual sequence reads. The resulting sets of non-redundant

sequence tags for each library were mapped to the bovine and

BoHV-1 reference genomes [10]. We found that the vast majority

of the mapped sequence tags originated from the bovine genome

and only a small fraction was derived from the BoHV-1 genome.

A detailed analysis and characterization of the small RNA

originating from the viral genome has been described elsewhere

(manuscript submitted).

Known bovine miRNAs and bovine orthologs of known
mammalian miRNAs

Following mapping of sequence tags to the reference bovine

genome we analyzed small RNA sequences originating from

known bovine miRNA loci listed in miRBase 13.0. We found that

out of 356 known cow miRNAs 338 could be positioned onto

assembled chromosomes; out of those 219 miRNA were detected

in at least one of our three small RNA libraries, 190 amongst those

were detected in either two or all three small RNA libraries

(Supplemental Table S1). We also identified sequence tags

representing miRNA* sequences for 115 out of 219 expressed

miRNA genes, a large increase over the eight reported previously

(Supplemental Table S1). This finding is consistent with several

deep sequencing studies performed in other vertebrates that

illustrated higher sensitivity of deep sequencing approach over

methods such as Northern hybridization and microarrays

[15,18,19]. In five cases (bta-mir-30b, bta-mir-193a, bta-mir-

345, bta-mir-365, bta-mir-423) we discovered that miRNA* are

more abundant than corresponding miRNA as evidenced by

higher counts of sequence reads originating from miRNA* arms of

the microRNA precursor sequences (Supplemental Table S1).

Although these cases could be simple annotation artifacts, it is also

possible that they reflect regulated processing of pre-miRNA that

results in preferential utilization of different arms of miRNA

precursor [15,20]. We also identified two miRNAs (bta-mir-23b

and bta-mir-27a) that demonstrated nearly equal number of

sequence reads originating from the 59 and 39 arms of the miRNA

hairpin precursor (Supplemental Table S1). This type of

expression pattern is representative of miRNA genes that have

similar 59 end stability of the processed small RNA duplex that

leads to equal incorporation of either strand into the RISC and

their protection from degradation [20]. A few such miRNA genes

have been predicted and validated in different species [15,21,22].

As reflected by the total counts of miRNA-derived sequence

reads, known miRNAs had a very broad range of expression

which varied from thousands sequence reads for the most

abundant miRNAs such as ubiquitous let-7 miRNA family, bta-

mir-21, and bta-mir-140 to zero for the approximately one quarter

of known cow miRNAs that have not been detected in our small

RNA libraries (Supplemental Table S1).

Several previous studies have demonstrated that many verte-

brate miRNA genes show high level of evolutionary conservation

[23–27]. Given that number of known cow miRNAs in miRBase is

substantially smaller than that identified in other mammalian

genomes such as mouse and human we reasoned that at least some

of the miRNA identified in other mammals would have

orthologous evolutionary conserved sequences present in bovine

genome (Supplemental Figure S1). To validate this hypothesis we

used non-redundant set of known human, dog and mouse

miRNAs sequences listed in miRBase 13.0 to search for highly

similar DNA sequences in the bovine genome. Sequences returned

by sequence similarity searches were then confirmed as ortholo-

gous miRNA candidates by analysis of their predicted RNA

structures (File S1). Using this approach we identified five new

orthologous miRNAs in cattle genome (cfa-mir-1842, cfa-mir-194,

hsa-mir-1277, hsa-mir-1468, hsa-mir-320a) that were expressed in

our deep sequencing data; two of those also had detectable

miRNA* (cfa-mir-1842*, cfa-mir-194*) (Supplemental Table S1).

The relatively small number of the newly discovered bovine

orthologs is consistent with emerging notion that the majority of

highly evolutionary conserved miRNA that are present within the

entire mammalian lineage has already been identified. Most of the

miRNA discovered recently appear to be present only within

narrow phylogenetic groups [25,28,29].

In an earlier miRNA discovery study we observed rare cases

suggestive of unusual miRNA processing as evidenced by

uncharacteristic distribution of small RNA sequence tags mapped

to miRNA loci [15]. These loci had detectable small RNA

sequence tags originating from either the terminal loop of the

miRNA precursor or from its distal ends. Interestingly, two

miRNA reported in the previous study in chicken (gga-mir-451

and gga-mir-218) also had detectable small sequence tags

originating from terminal loop regions in the current study

(Supplemental Figures S2a, S2b). Although similar examples have

also been reported in other studies they were usually regarded as

miRNA processing intermediates detected due to the much larger

volume of sequence data [29,30]. This is probably true for most of

such cases, however, unusually high proportion of sequence tags

originating from terminal loop region relative to abundance of

known mature miRNA, and detection of similar pattern in two

distantly related organisms suggests that at least in some cases such

as mir-451 and miRNA-218 small RNA sequences derived from

terminal loop region of the miRNA precursor may be functionally

miRNAs and BoHV-1 Infection
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active [15]. Another example of unusual miRNA processing

presented in the Supplemental Figure S2c shows small RNA

sequence tags originating from distal ends of the bovine miRNA

bta-mir-21 precursor. Remarkably, this distribution of small RNA

tags strongly resembles pattern of endogenous siRNA processing

recently discovered in fruit fly and mouse suggesting possible cross-

talk between the two pathways [16,31].

Bidirectionaly transcribed miRNAs
Three recent studies in fruit fly and other organisms reported

cases of miRNA loci characterized by bidirectional transcription

from both genomic DNA strands that gives rise to functionally

distinct miRNAs [32–34]. Inspired by these findings we investi-

gated presence of such miRNA loci in cow genome. Although,

mammalian miRNA mir-338 reported by Tyler and colleagues

didn’t show any evidence of bidirectional transcription in our

experimental system (data not shown), we identified four new loci

showing evidence of bidirectional transcription amongst known

bovine miRNA and additional five loci amongst newly identified

bovine miRNA (Figure 1C, Supplemental Figures S3a–S3h). In

another case (bta-mir-219, Supplemental Figure S6) we found that

the majority of the small RNA sequence tags were derived from

the genomic strand opposite to the currently annotated miRNA.

Although, it is likely that this case is a simple miRNA annotation

error it is also possible that bta-mir-219 could display regulated bi-

directional transcription similar to the examples described above.

Newly identified miRNAs
To identify novel miRNAs in the sequencing data from the

three small RNA libraries we used the following criteria: (1)

genomic loci annotated as known bovine miRNAs or as other

classes of non-coding RNA were excluded; (2) to be considered for

further analysis an individual locus had to be supported by at least

two independent sequence reads originating from at least two

small RNA libraries; (3) the loci lacking hairpin-like RNA

secondary structures including the positions of the small RNA

tags were eliminated. The resulting set of sequences and their

respective RNA structures were analyzed further to distinguish

genuine miRNA precursors from other RNAs that contain similar

RNA structures (e.g. tRNA-derived repeat elements; File S1).

The resulting dataset was comprised of 268 unique sequences

identified as novel bovine miRNA and miRNA* (Supplemental

Tables S3–S5). Analysis of evolutionary conservation of the newly

identified bovine miRNAs in the human, mouse, dog, horse, and

possum genome assemblies didn’t reveal any new conserved

miRNA except the five new bovine orthologs of known

mammalian miRNAs identified previously. This result suggests

that majority of the newly identified miRNA might be specific to

the ruminant lineage.

Mirtrons
Several recent studies have described an alternative miRNA

processing pathway which uses intron splicing machinery instead

of the Drosha endonuclease to generate miRNA precursors from

intronic sequences [15,35–38]. A distinct feature of such miRNA-

generating introns is that the miRNA hairpin-like precursor is

directly adjacent to the splice sites such that mature miRNA

sequences often start directly at the 59 terminus of the intron and/

or end at its 39 terminus. The few mirtrons identified to date

originate from the diverse evolutionarily lineages of insect

(Drosophila sp.), worms (Caenorhabditis elegans), and mammals

(primates and rodents) [15,35–38]. Identification of mirtrons in

sequencing data is heavily reliant on comprehensive annotations

on genes and exon-intron junctions [15,37,38]. This is why

bioinformatics approaches used in other well annotated genomes

have only a limited applicability in cattle due to the present under-

annotation of the bovine genome. Considering these factors we

used a combination of bioinformatics and comparative genomics

approaches to search for mirtrons in bovine genome. For de-novo

identification of mirtrons we used methodology described earlier

[15]. This analysis yielded two tailed-mirtrons - these type of

mirtrons do not span the entire length of introns but are directly

adjacent to either donor or acceptor splice sites and were

previously referred to as ‘‘atypical mirtrons’’ [15,38]. These

mirtrons were localised at the acceptor splice sites within TPRG1L

and DDX5 genes respectively and were expressed in all three small

RNA libraries as evidenced by presence of sequence tags

(Figure 1B, Supplemental Figure S4a). The example of the

DDX5 mirtron illustrates well present challenge of identification of

mirtrons in the bovine genome–there is no RefSeq annotation

currently available for the bovine DDX5 gene (Supplemental

Figure S4a), and as a result DDX5 mirtron could only be identified

using human protein annotations mapped onto bovine genome

(Supplemental Figure S4a). Therefore we recognize that some

bovine-specific mirtrons would have been missed in our analysis

due to the lack of comprehensive annotations of the bovine genes.

For comparative genomics analyses we used known mammalian

mirtrons identified in two recent studies [37,38]. Although we

were able to identify five sequences that were evolutionary

conserved in terms of sequence similarity, microsynteny between

genomes, and predicted RNA secondary structure, only one of

them had evidence of expression in our sequencing libraries

(Figure 1A, Supplemental Figures S4b–S4e). This mirtron known

as mir-877 is localised within ABCF1 gene and has been also

detected in human, chimpanzee, mouse and rat in two recent

studies (Figure 1A) [37,38].

snoRNA-derived small RNAs
Small nucleolar RNA (snoRNA) is a class of evolutionary

conserved non-coding RNAs present throughout the Eukaryotes

[39]. Their best characterized function is catalysis of maturation of

spliceosomal and ribosomal RNA by guiding methylation and

pseudouridylation of target RNAs in sequence-specific manner

[39]. Three recent studies including ours, uncovered an unex-

pected link between snoRNA and small regulatory RNA

biogenesis pathways [6,8,40]. These studies demonstrated that

snoRNA could be further processed into small RNA and that this

processing requires AGO and DICER–two essential enzymes

involved in miRNA and siRNA processing [4,6,8,41].

Although analysis of snoRNA loci in the bovine genome is

complicated by the current lack of comprehensive annotation of

non-coding RNAs we analyzed bovine snoRNA loci that could be

identified using human snoRNA annotations and syntenic

alignment tool from UCSC genome browser (File S1). We

identified ten snoRNA genes and two snRNA genes that gave

rise to small RNAs with typical miRNA and/or siRNA

characteristics (Figure 1D, Supplemental Figures S5a–S5k).

Identification of small RNA originating from HBII-85 snoRNA

is particularly intriguing (Figure 1D). This snoRNA was originally

identified in mouse where it was found to be expressed

predominantly in brain, and to the lesser extent in muscle, kidney,

and lung [42]. Together with other snoRNA lacking obvious

targets within spliceosomal and/or ribosomal RNA this snoRNA

was classified as ‘‘orphan’’ [43]. Although a possible link between

HBII-85 and Prader–Willi syndrome was suggested at the time of

discovery its definite role in the disease was confirmed only

recently by two genetic studies in mouse and human [42,44,45].

Nevertheless, the molecular mechanisms behind HBII-85 function

miRNAs and BoHV-1 Infection
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Figure 1. Small regulatory RNA in the bovine genome. Each panel shows UCSC genome browser screens. Small RNA sequence tags originating
from the three small RNA libraries are shown as follows: mock-infected control - green, MOI 0.75 library - dark orange, MOI 7.5 library–magenta.
Predicted pre-miRNA hairpin-like precursors are shown in blue. Arrowheads indicate alignment of sequences relative to the genomic strands. (A)
Evolutionary conserved mirtron bta-mir-877 (deep red) located within intron of the ABCF1 gene. ABCF1 exon-intron junction is shown as black block
(exon) and thin black line (intron) (B) New tailed mirtron located within intron of the TPRG1L gene. TPRG1L exon-intron junction is shown as light blue
block (exon) and thin light blue line (intron) (C) New bovine miRNA with predicted miRNA precursors (blue) on both genomic strands and small RNAs
originating from positive (right) and negative (left) genomic strands. (D) Small RNA sequence tags originating from an orphan snoRNA HBII-85 locus
(blue). The distribution of small RNA tags closely resembles pattern characteristic of Dicer-dependent processing.
doi:10.1371/journal.pone.0006349.g001
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still remain to be fully elucidated. Given the two recent studies that

demonstrated that snoRNA can serve as miRNA precursor [6,8],

it is tempting to suggest that snoRNA HBII-85 and other similar

‘‘orphan’’ snoRNA function predominantly as processed small

RNA species in miRNA and/or siRNA pathways [4].

Materials and Methods

Construction of small RNA libraries and ultrahigh
throughput sequencing

The source of bovine RNA, RNA sample preparation, and

construction of small RNA sequencing libraries is described in

supplemental methods (File S1). In brief, a cultured MDBK cell

line derived from normal adult bovine kidney was used a source of

bovine RNA [46]. The MDBK monolayers were either mock

inoculated or infected with the infection clone pBACBHV-37 [47],

of the BoHV-1, strain V155 at multiplications of infectivity (MOI)

of 0.75 and 7.5. At 6 h post-infection monolayers were harvested

and total RNA isolated using Trizol reagent (Invitrogen) according

to the manufacturer’s instructions.

Approximately 20 mg of total RNA isolated from MDBK cells

either infected (MOI of 0.75 and 7.5) or mock inoculated with

BoHV-1 was supplied to GeneWorks Pty Ltd (Adelaide, Australia)

for construction of small RNA libraries and ultrahigh throughput

sequencing. Sequencing was performed on the Illumina Genome

Analyzer G1 according to the manufacturer’s protocol.

Analysis of sequencing data
Individual sequence reads with the base quality scores were

produced by GeneWorks Pty Ltd using Illimina’s Data Analysis

Pipeline software v.1.0. Subsequent sequence data analyses were

carried out as described by Glazov et al. with some modification

[15]. All identical sequences were counted and combined into one

record. The resulting set of the unique sequences with associated

‘read counts’ is referred to as sequence tags. A mirror of the UCSC

genome browser and database was created with the Bos Taurus v. 3

genome sequence assembly and annotations (bosTau3, August

2006) [48,49]. After trimming the 39 adaptor sequence, sequence

tags were mapped onto bovine and BoHV-1 (GenBank AJ004801)

genome assemblies using BLAT software [50]. To identify

sequence tags originating from coding exons, repeats, rRNA,

tRNA, snRNA and snoRNA we used UCSC ‘‘RefGene’’,

‘‘RepeatMasker’’ and NCBI ‘‘RefSeq’’ data [48,51], as well as

our own sets of ncRNA annotations compiled from the NCBI

GenBank data (http://www.ncbi.nlm.nih.gov/). To identify novel

miRNA genes we identified all hairpin-like RNA structures

encompassing small RNA sequence tags using RNAfold [52];

then we analyzed sequence and structural features of the predicted

hairpin-like structures to distinguish genuine miRNA precursors

from other RNA classes that may contain similar RNA structures

(e.g. tRNA-derived repeat).

To identify the evolutionary conserved orthologs of the bovine

miRNAs in other mammalian genomes we used bovine pre-

miRNA sequences to search for highly similar sequences in

human, mouse, dog, horse, and opossum genomes. The search

was performed using BLAT Kent 2002 [50] with the following

parameters: -noHead -minMatch = 1 -oneOff = 1 -minIden-

tity = 90 -tileSize = 8. Sequence alignments covering at least 80%

of the length of BoHV-1 pre-miRNA were considered as potential

orthologs and used in further RNA secondary structure analyses.

Known mammalian miRNA sequences were obtained from

microRNA database at the Sanger center (miRBase 13.0 March

2009) [3].

Data deposition and accession numbers
All sequences identified as new miRNA precursors and the

mature miRNA were submitted to the miRBase at the Sanger

Centre (http://microrna.sanger.ac.uk/registry/). Original se-

quence data generated in this study have been deposited to the

NCBI Gene Expression Omnibus database (http://www.ncbi.

nlm.nih.gov/geo/) under accession number GSE15450.
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